GDEP Solutions, Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ
シリコンバレー発信

New Technology
​Report

[No.21] Waymoはサンフランシスコで住民を乗せて走行試験を開始、自動運転車が高齢者の日常生活を支援できるかを検証

8/27/2021

 
Waymoは今週、サンフランシスコで住民を乗せて自動運転車の走行試験を開始することを発表した。

​これは「Waymo One Trusted Tester Program」と呼ばれ、自動運転車に関する住民の意見を把握することを目的とする。
特に、自動運転車が高齢者や非健常者の日常生活を支援できるかを検証することがプログラムの中心となる。
画像
出典: Waymo

住民を乗せて走行試験

この実証試験は、Waymoの自動運転車最新モデル「Jaguar I-PACE」で実施される(上の写真)。

​クルマは自動運転技術「Waymo Driver」の最新版「5th Generation」を搭載している。

​Waymoはアリゾナ州フェニックスで営業運転を展開しているが、サンフランシスコでは2021年2月から社員が乗客となり試験走行を進めている。

​道路が整備されたフェニックスとは異なり、サンフランシスコでは市街地の込み合った道を安全に走行する技術が求められる。

検証のポイント

クルマには専任スタッフ「Autonomous Specialist」が搭乗して試験走行が実施される。
このプログラムは自動運転車が住民の生活に如何に役立つかを検証する。

サンフランシスコはバスや路面電車の他に、UberやLyftなどライドシェアサービスが充実している。
この環境でWaymoの特性を把握し如何に差別化を図るかが問われる。

​Waymoは高齢者や非健常者の足となることを想定しており、車いすや杖を使って生活する住人が自動運転車をどう評価するのかを解析する(下の写真)。

​また市当局と共同で、Waymoが公共交通機関と連携して住民が移動しやすくする仕組みを構築する。
画像
出典: Waymo

サンフランシスコでの世論調査

Waymoはこれに先立ちサンフランシスコで自動運転車に関する住民の世論調査を実施した。

地域住民にクルマの運転や生活における移動方法などを訪ねたもので、地域の特性が明らかになった。

​サンフランシスコにおける運転で困ることのトップは駐車場が少ないことで、また、公共交通機関がスケジュール通り運行していないことも課題となる。

​また、サンフランシスコは高齢者や非健常者が多いことも特徴で(下のグラフ)、94,000人が移動手段で問題を抱えている。
画像
出典: Waymo

試験走行エリア

Waymoは試験走行エリアを示していないが、米国メディアはサンフランシスコのダウンタウンを除く部分としている。

ユニオンスクエアを中心とするダウンタウンはオフィスビルが立ち並びビジネス街や観光地となっている。
Waymoは、この地域は走行せず、住民が住んでいるサンフランシスコ西部と南部を中心に試験する。

​因みに、曲がりくねったロンバード・ストリート(Lombard Street)は試験エリアに含まれていない。

Waymo Drive最新モデル

WaymoはセンサーとしてLidar、カメラ、レーダーを搭載し(下の写真)、これをソフトウェアで解析し自動で走行する。

​Waymo Driveの最新モデル5th Generationではセンサーの機能やパッケージングが改良された。

​レーダーは「Imaging Radar System」と呼ばれ、カメラのように高解像度でオブジェクトを把握することができる。

​また、Lidarやカメラは構造がシンプルになり製造コストを半分にすることに成功した。
​これから自動運転技術が本格的に製造されるが、Waymo Driveの量産体制が整った。
画像
出典: Waymo

高齢化社会と自動運転車

サンフランシスコは、全米の中で自動運転車にとって最も高度な技術を必要とする都市となる。
ここで安全に走行できれば他の都市でも運行できることになる。

このため、Waymoの他に、GM/CruiseやAmazon/Zooxがサンフランシスコで自動運転車の開発を進めている。

自動運転車の出荷を目前に控え、Waymoは高齢者や非健常者の足として生活を支えるクルマとして商品化している。

​日本を含め世界で高齢化が進む中で自動運転車の役割が重要になってきた。
≪ 前の記事を見る
次の記事を見る ≫

[No.20] 米国の小売店舗は万引き防止のためAI監視カメラの導入を進める、人権団体は消費者保護を理由に廃止を求める

8/13/2021

 
米国の主要小売店舗でAI監視カメラの導入が進んでいる。

店舗に設置された監視カメラの映像をAIで解析し、商品窃盗者の身元を特定する目的で使われる。
消費者が気付かないうちに普及が進み、今ではApple Storeなど大手小売店舗がAI監視カメラを導入している。

​しかし、人権保護団体は、AI監視カメラは消費者の誤認逮捕につながるとして、小売店舗に対しシステムの使用を停止するよう求めている。
画像
出典: Macy’s

老舗デパート・メイシーズ

米国のデパートやスーパーマーケットでAI監視カメラの導入が進んでいる。老舗デパートであるMacy’sは、顔認識システムを導入していることを明らかにしている。

その理由として、犯罪組織が特定地域で商品窃盗を繰り返しており、これを抑止するためにAI監視カメラを利用すると説明している。

​実際に、米国は昨年から治安が悪化しており、有名店舗で高級品を狙った窃盗事件が多発している。

アップルストアー

Appleは何も公表していないが、Apple StoreはAI監視カメラを導入し、商品窃盗を防止していることが判明した。
Appleとそのセキュリティ企業 Security Industry Specialistsは、消費者から顔認識システムに関し訴訟を受けている。

訴状によると、Appleは顔認識システムで窃盗者を特定したが、これはアルゴリズムのエラーで、別の人物がその人物になりすまして犯行を実行したことが判明した。

このため、消費者は誤認逮捕されたとしてAppleなどを提訴している。この訴訟が切っ掛けでAppleがAI監視カメラを導入していることが明らかになった。
画像
出典: Apple

セブンイレブンなど

この他に、コンビニ 7-Elevenは、オーストラリアの全店舗でAI監視カメラを導入している。

また、ハンバーガーチェインのMcDonald’sは2019年、注文受付カウンターで顔認識システムのプロトタイプの運用を開始した。
現在、マクドナルドは監視カメラで店舗内の顧客を撮影し、セキュリティを強化している。

​一方で、AI監視カメラを使用しないと表明する企業も少なくない。
​Starbucksは顔認識システムを利用しないことを明言しており、顧客のプライバシーを保護する方針を維持している。

多くの店舗が顔認識システムを導入

人権監視団体「Fight for the Future」は顔認識システムの利用状況をまとめ、これをデータベースとして公開している。

これによると、調査した53社のうち35社が顔認識システムを使っている。
消費者が気付かないうちに米国小売店で顔認識システムの普及が進み、全体の2/3がAI監視カメラを導入している。

​現在、人権監視団体は小売店舗で顔認識システムの利用を停止するための活動を展開している。

反対する理由

人権監視団体がこの運動を展開する理由は消費者や店舗従業員の保護にある。

顔認識アルゴリズムは判定精度が十分でなく、システムは間違った判定を下すことが少なくない。

このため、Apple Storeのケースのように、消費者が誤認逮捕されることになる。また、顔認識システムは消費者の挙動を収集するためにも使われる。

AI監視カメラで消費者の店内での挙動を把握し、この情報を元にターゲット広告を配信する。更に、AI監視カメラは小売店舗従業員の仕事ぶりを監視する目的で使われ、アルゴリズムが動きを逐一モニターする。
画像
出典: Fight for the Future

警察は顔認識システムの使用を中止

顔認識システムの妥当性についての議論が始まり、全米の警察はその利用を禁止する方向に進んでいる。

サンフランシスコ市は、警察が顔認識技術を使うことを禁止した。これがトリガーとなり、対岸のオークランド市とバークレー市も顔認識技術の使用を禁止し、警察はこのシステムの使用を中止した。

​この背後には政府がAIで市民を監視することへの漠然とした恐怖心があり、顔認識システム禁止の動きが全米に広がる勢いとなっている。

欧州と米国の動き

消費者はAIに対する漠然とした恐怖から、顔認識システムに過剰に反応していることも事実である。

AI監視カメラを正しく使うと、犯罪を抑止し、地域のセキュリティが向上する。このため、欧州委員会(European Commission)は、AI監視カメラについてその使用を認めている。

但し、AI監視カメラで顔認識システムが稼働していることを明示することを義務付けており、消費者への配慮を求めている。

​米国も同様な方向に進んでおり、警察での使用禁止とは対照的に、小売店舗や企業でAI監視カメラの導入が進んでいる。
≪ 前の記事を見る
次の記事を見る ≫

[No.19] Googleは監視カメラ最新モデルを発表、カメラにAIチップを搭載し検知精度が向上、エッジAIへの流れが加速

8/6/2021

 
Googleは監視カメラ「Nest Cam」とドアベル「Nest Doorbell」の最新モデルを発表した。

カメラはAIチップを搭載し、画像解析処理をデバイス上で実行する。クラウドを介すことなく、デバイス上で機械学習を実行でき、高精度で不審者などのオブジェクトを検知する。

​Googleはスマホ最新モデルPixel 6に続き、スマートホーム製品でもエッジAIを採用し、デバイスのAI処理性能を大幅に向上した。
画像
出典: Google

Nest CamとNest Doorbell

Googleはスマートホーム製品を「Nest」のブランドで提供しており、監視カメラ「Nest Cam」とドアベル「Nest Doorbell」の最新モデルを開発した。

Nest Camは二機種あり、屋外・屋内モデル(上の写真、右端)と屋内モデル(中央)で、前者はバッテリーで稼働する。
ドアベル(左側)もバッテリーで稼働し、配線は不要で簡単に設置できることが特徴となる。
​
​デザインも一新され、シンプルで背景に調和する色調や形状となった。

監視カメラ

Nest CamとNest Doorbellはカメラが捉えた映像をAIで解析してイベントを検知する構成となる。

Nest Camは家屋の外壁などに取り付けて利用する(下の写真右側)。
Nest CamのAIはオブジェクトの種別を判定し、人や動物やクルマを検知すると(左側)、それをアラートとして利用者のスマホに送信する(中央)。

外出先からでも自宅のセキュリティを確認することができる。
画像
出典: Google

ドアベル

Nest Doorbellはドアベルであるがカメラを搭載しており、監視カメラとして機能する(下の写真中央)。

Nest Doorbellは人の動きを検知し、訪問者があると、それをアラートとして利用者のスマホに送信する(左側)。

​利用者はアプリで訪問者を確認し、マイクボタンを押すとそのまま会話することができる。また、オンラインショッピングで商品が配送されるとそれを認識し(右側)、利用者に通知する。
画像
出典: Google

AIスピーカーとの連携

Googleは監視カメラやドアベルをスマートホームの主要製品と位置付け、AIスピーカーとの連携を強化している。

米国の家庭でAIスピーカーの導入が進んでいるが、Googleは「Nest Mini」(下の写真左端)や「Nest Hub」(右端)を提供している。

​Nest Hubはディスプレイを搭載したAIスピーカーで、監視カメラやドアベルがイベントを検知すると、カメラの映像がストリーミングされる。訪問者をディスプレイで確認してドアを開けるなどの応対ができる。
画像
出典: Google

Tensorチップ

Nest CamとNest DoorbellはAIチップ「Tensor Processor(TPU)」を搭載しており、カメラの映像をデバイス上で解析する。

従来はカメラの映像をクラウドに送付して解析していたが、これをデバイス上で処理することで性能アップを達成した。

具体的には、Nest CamとNest Doorbellは現行製品と比較して、二倍のピクセルとフレームを処理することができ、判定精度が大きく向上した。

​GoogleはエッジAIの開発を進め、先週発表されたPixel 6に続き、NestでもAIチップをデバイスに搭載する構成を取る。GoogleはIoTデバイス向けのAIチップを「Edge TPU」として販売している(下の写真)。
画像
出典: Google

実際に使ってみてみると

実際に、Nest Doorbellの現行モデルを使っているが、玄関先のセキュリティが強化され、安心感が大幅に向上した。

使い方はシンプルで、スマホアプリ「Nest」からドアベルが捉えた玄関先のビデオを見ることができる(下の写真左端)。

また、来客があると、アラートをスマホで受信する。更に、商品が宅配されたとき、AIはそのイベントを把握し、スマホにメッセージを送信する(中央最上段)。

​玄関先に置かれた商品を手早く取り上げることで盗難被害を防ぐことができる。
画像
出典: VentureClef

クラウドに映像を記録

撮影されたビデオはクラウド「Nest Aware」に記録され、これを検索することで特定のイベント(商品配送など)を再生できる(上の写真右端)。

​一方、木の陰などをイベントとして捉え、アラートを受け取ることがあり、判定精度が課題であるとも感じる。
​最新モデルはAIチップが搭載され、画像解析の判定精度が上がり、誤検知が減ると期待される。

AIドアベルが人気商品

いま米国でAI監視カメラの導入が進んでいる。

特に、AIドアベルの人気が高く、多くの家庭がセキュリティ強化のために設置している。

​Googleからは上述のNest Doorbellが出荷されている。また、Amazonからは「Ring Doorbell」が提供され、両者が人気商品で市場を二分している。

​これらは、宅配商品の盗難を防ぐために、また、自宅前のイベントを監視するために使われている。

​GoogleはドアベルのAI性能を向上することでAmazonとの差別化を図っている。
≪ 前の記事を見る
次の記事を見る ≫

    著者

    Kaz Miyamoto
    ​
    VentureClef, LLC

    記事一覧(目次)で見る

    カテゴリ

    すべて
    AI(人工知能)技術
    AIセキュリティ
    AI規制
    GAFAM
    NFT
    ヘルスケア
    メタバース
    ロボット
    自動運転車

    アーカイブ

    3 月 2022
    2 月 2022
    1 月 2022
    12 月 2021
    11 月 2021
    10 月 2021
    9 月 2021
    8 月 2021
    7 月 2021
    6 月 2021
    5 月 2021
    4 月 2021

    RSS フィード

Picture
GDEPソリューションズ株式会社
東京都文京区本郷三丁目34番3号 本郷第一ビル8階
TEL:03-5802-7050
・NVIDIA認定 Elite Partner [最上位レベル]
・NVIDIA Advanced Technology Program 達成  [DGX 販売資格]
・東京都公安委員会 古物営業許可番号
 第305471905562号
≫ 新着情報
≫ GPU2021開催概要
​
GPU製品
​≫ 即納モデル
≫ NVIDIA GPU一覧
 ≫NVDIA RTX スペック比較

≫ GPUレンタル一覧
≫ GPU年定額プラン
≫ AI・データサイエンスおすすめ
≫ 数値計算・解析おすすめ一覧
≫ NVIDIA A100搭載 SM740GP


​ストレージ
​≫ Synology
≫ DDN STORAGE
≫ PURESTORAGE
​
HPC
≫ HPC Workstation
≫ HPCおすすめGPUサーバー
≫ AXXE-L by XTREME-D
≫ NVIDIA HPC SDK
≫ プログラム高速化サービス
クラウド製品
​≫ セキュリティ
≫ 仮想化
≫ リモートアクセス

≫ ハイブリッドクラウドNAS
≫ クラウドストレージ
​
​GPUコラム
≫ GPUプログラミング入門
≫ GPU Technology for CG/AI
≫ シリコンバレー発信 New Technology Repot
≫ ツブ子が聞く・見る・行く
​

導入事例
≫ DGX SYSTEMS
≫ GPU Computing
会社情報
≫ ごあいさつ
≫ 会社概要
≫ アクセスマップ
≫ 採用情報
​
≫ お問い合わせ
​
≫ 個人情報の取扱いについて
≫ 利用規約

​
≫ メルマガを購読する
グループ会社
Prometech Softwareサイト
©2021 GDEP Solutions,Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ