GDEP Solutions, Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ
シリコンバレー発信

New Technology
​Report

[No.17] Googleが産業用ロボット市場に進出、高度なAIでロボットのソフトウェアを開発、日本企業との競争が始まる

7/23/2021

 
Googleの親会社であるAlphabetは、産業用ロボットを開発するため独立会社「Intrinsic」を創設した。

ロボットはムーンショット工場「Alphabet X」で開発されてきたが、ここを卒業し独立企業として製品化を目指す。
Intrinsicは、ロボットの頭脳となるソフトウェアを開発する。

日本企業は産業用ロボットで大きなシェアを占めているが、ここでGoogleとの競争が始まることになる。
画像
出典: Intrinsic

Intrinsicの概要

Intrinsicは、産業用ロボット(Industrial Robotics)のソフトウェアを開発する。
ロボット本体のハードウェアではなく、その頭脳となるソフトウェアを開発する。

産業用ロボットとは製造工場で組み立て作業などを行うロボットで、ソーラーパネルや自動車の製造ラインで使われる。

​つまり、Intrinsicは家庭向けのヒューマノイドではなく、製造ライン向けにロボットアームを稼働させるソフトウェアを開発する。

産業用ロボットを開発する理由

Intrinsicが産業用ロボットを開発する理由は、製造業を中国から米国や欧州などの先進国に戻すためである。

国際経済フォーラムによると、現在、全世界の製造量の70%を10の国が担っている(下のグラフィックス)。
特に、中国はその28.4%を占め、世界の工場として稼働している。

​Intrinsicが開発するロボットを使えば、どこにでも簡単に製造ラインを構築できる。
各国が自国に製造施設を持つことができ、新たなビジネスが生まれる。

更に、消費地に近い場所で製造することで、製品を輸送する距離が短縮され、地球温暖化ガスの削減につながる。

​特に、米国は自国に製造業を呼び戻す政策を進めているが、2030年までに作業員が210万人不足すると予想され、これを産業用ロボットで補完する。
画像
出典: Statista

現行の産業用ロボットの限界

現在、家電製品や自動車の製造で産業用ロボットが使われているが、そのテクノロジーは旧態依然のままであり、これがロボットの普及を妨げている。

​産業用ロボットのソフトウェアは特定のタスクを実行するために書かれている。
これはハードコーディングと呼ばれ、例えば、部品の溶接ではそれ専用にコーディングする。

​また、パネルを接着してケースを作るには、そのタスクに特化したコーディングをする。

​このため、タスクごとにソフトウェアを開発することになり、多数のエンジニアを必要とし、完成するまでに時間を要す。

Intrinsicのアプローチ

これに対し、Intrinsicは高度なAIを使いインテリジェントな産業用ロボットを開発する戦略を取る。

​チームは数年にわたり、産業用ロボットの視覚機能、学習能力、補正能力などを開発してきた。

​具体的には、オブジェクト認識技術(Perception)、深層学習(Deep Learning)、強化学習(Reinforcement Learning)など最新のAI技法を開発し、幅広いタスクを実行できる産業用ロボットを目指している。
画像
出典: Intrinsic

プロトタイプの検証

Intrinsicはこれらの機能を実装したプロトタイプを制作しその機能を検証した。

ロボットは深層学習とフォース制御機能を搭載することで、異なる形状のUSB端子を正しい場所に最適な力で挿入することができる(上の写真)。

​開発に要した時間は2時間で、短時間で複雑な操作ができるロボットの開発に成功した。
​また、視覚機能や計画機能を搭載することで、二台のロボットが共同で家具のパネルを組み立てることができる(下の写真)。
画像
出典: Intrinsic
更に、ロボットが協調して木造家屋を組み立てることができる(下の写真)。

これはチューリッヒ工科大学(ETH Zurich)のGramazio Kohler Researchで実施されたもので、四台のロボットが協調して家屋のパネルを組み立て接着剤で固定する。

​製造現場では多様なタスクを実行する必要があるが、プロトタイプは短時間で開発され、ロボットが汎用的な作業ができる目途がついたとしている。​
画像
出典: Gramazio Kohler Research, ETH Zurich

ムーンショットを卒業

チームはムーンショット工場「Alphabet X」(下の写真)で5年半にわたり、プロトタイプの開発を進めてきたが、これからはIntrinsicで産業用ロボットの商用化を目指す。

​対象分野は家電産業や自動車製造やヘルスケアで、パートナー企業と商用モデルを開発する。
画像
出典: VentureClef

ロボット開発の歴史

Googleのロボット開発は2013年に始まり、Boston Dynamicsなど6社を相次いで買収した。
​この中には日本企業Schaftも含まれていた。

​ロボット開発プロジェクトは「Replicant」と呼ばれ、Androidの生みの親Andy Rubinの下で進められた。
​しかし、プロジェクトで目立った成果は無く、GoogleはReplicantを中止した。

ロボット開発を再開

その後、Googleはソフトウェアに重点を移し、ロボット開発を再開した。
コア技術であるAIを駆使しインテリジェントなロボット開発を進めてきた。

その最初の成果が「Everyday Robots」で、家庭やオフィスで日々のタスクを実行するロボットを発表した。

この開発ラインから分岐し、Intrinsicは産業用ロボットを開発する。

​産業用ロボット市場では多くの企業から製品が投入されており、これから日本企業など先行企業との競争が始まることになる。
≪ 前の記事を見る
次の記事を見る ≫

    著者

    Kaz Miyamoto
    ​
    VentureClef, LLC

    記事一覧(目次)で見る

    カテゴリ

    すべて
    AI(人工知能)技術
    AIセキュリティ
    AI規制
    GAFAM
    NFT
    ヘルスケア
    メタバース
    ロボット
    自動運転車

    アーカイブ

    3 月 2022
    2 月 2022
    1 月 2022
    12 月 2021
    11 月 2021
    10 月 2021
    9 月 2021
    8 月 2021
    7 月 2021
    6 月 2021
    5 月 2021
    4 月 2021

    RSS フィード

Picture
GDEPソリューションズ株式会社
東京都文京区本郷三丁目34番3号 本郷第一ビル8階
TEL:03-5802-7050
・NVIDIA認定 Elite Partner [最上位レベル]
・NVIDIA Advanced Technology Program 達成  [DGX 販売資格]
・東京都公安委員会 古物営業許可番号
 第305471905562号
≫ 新着情報
≫ GPU2021開催概要
​
GPU製品
​≫ 即納モデル
≫ NVIDIA GPU一覧
 ≫NVDIA RTX スペック比較

≫ GPUレンタル一覧
≫ GPU年定額プラン
≫ AI・データサイエンスおすすめ
≫ 数値計算・解析おすすめ一覧
≫ NVIDIA A100搭載 SM740GP


​ストレージ
​≫ Synology
≫ DDN STORAGE
≫ PURESTORAGE
​
HPC
≫ HPC Workstation
≫ HPCおすすめGPUサーバー
≫ AXXE-L by XTREME-D
≫ NVIDIA HPC SDK
≫ プログラム高速化サービス
クラウド製品
​≫ セキュリティ
≫ 仮想化
≫ リモートアクセス

≫ ハイブリッドクラウドNAS
≫ クラウドストレージ
​
​GPUコラム
≫ GPUプログラミング入門
≫ GPU Technology for CG/AI
≫ シリコンバレー発信 New Technology Repot
≫ ツブ子が聞く・見る・行く
​

導入事例
≫ DGX SYSTEMS
≫ GPU Computing
会社情報
≫ ごあいさつ
≫ 会社概要
≫ アクセスマップ
≫ 採用情報
​
≫ お問い合わせ
​
≫ 個人情報の取扱いについて
≫ 利用規約

​
≫ メルマガを購読する
グループ会社
Prometech Softwareサイト
©2021 GDEP Solutions,Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ