GDEP Solutions, Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ
シリコンバレー発信

New Technology
​Report

[No.19] Googleは監視カメラ最新モデルを発表、カメラにAIチップを搭載し検知精度が向上、エッジAIへの流れが加速

8/6/2021

 
Googleは監視カメラ「Nest Cam」とドアベル「Nest Doorbell」の最新モデルを発表した。

カメラはAIチップを搭載し、画像解析処理をデバイス上で実行する。クラウドを介すことなく、デバイス上で機械学習を実行でき、高精度で不審者などのオブジェクトを検知する。

​Googleはスマホ最新モデルPixel 6に続き、スマートホーム製品でもエッジAIを採用し、デバイスのAI処理性能を大幅に向上した。
画像
出典: Google

Nest CamとNest Doorbell

Googleはスマートホーム製品を「Nest」のブランドで提供しており、監視カメラ「Nest Cam」とドアベル「Nest Doorbell」の最新モデルを開発した。

Nest Camは二機種あり、屋外・屋内モデル(上の写真、右端)と屋内モデル(中央)で、前者はバッテリーで稼働する。
ドアベル(左側)もバッテリーで稼働し、配線は不要で簡単に設置できることが特徴となる。
​
​デザインも一新され、シンプルで背景に調和する色調や形状となった。

監視カメラ

Nest CamとNest Doorbellはカメラが捉えた映像をAIで解析してイベントを検知する構成となる。

Nest Camは家屋の外壁などに取り付けて利用する(下の写真右側)。
Nest CamのAIはオブジェクトの種別を判定し、人や動物やクルマを検知すると(左側)、それをアラートとして利用者のスマホに送信する(中央)。

外出先からでも自宅のセキュリティを確認することができる。
画像
出典: Google

ドアベル

Nest Doorbellはドアベルであるがカメラを搭載しており、監視カメラとして機能する(下の写真中央)。

Nest Doorbellは人の動きを検知し、訪問者があると、それをアラートとして利用者のスマホに送信する(左側)。

​利用者はアプリで訪問者を確認し、マイクボタンを押すとそのまま会話することができる。また、オンラインショッピングで商品が配送されるとそれを認識し(右側)、利用者に通知する。
画像
出典: Google

AIスピーカーとの連携

Googleは監視カメラやドアベルをスマートホームの主要製品と位置付け、AIスピーカーとの連携を強化している。

米国の家庭でAIスピーカーの導入が進んでいるが、Googleは「Nest Mini」(下の写真左端)や「Nest Hub」(右端)を提供している。

​Nest Hubはディスプレイを搭載したAIスピーカーで、監視カメラやドアベルがイベントを検知すると、カメラの映像がストリーミングされる。訪問者をディスプレイで確認してドアを開けるなどの応対ができる。
画像
出典: Google

Tensorチップ

Nest CamとNest DoorbellはAIチップ「Tensor Processor(TPU)」を搭載しており、カメラの映像をデバイス上で解析する。

従来はカメラの映像をクラウドに送付して解析していたが、これをデバイス上で処理することで性能アップを達成した。

具体的には、Nest CamとNest Doorbellは現行製品と比較して、二倍のピクセルとフレームを処理することができ、判定精度が大きく向上した。

​GoogleはエッジAIの開発を進め、先週発表されたPixel 6に続き、NestでもAIチップをデバイスに搭載する構成を取る。GoogleはIoTデバイス向けのAIチップを「Edge TPU」として販売している(下の写真)。
画像
出典: Google

実際に使ってみてみると

実際に、Nest Doorbellの現行モデルを使っているが、玄関先のセキュリティが強化され、安心感が大幅に向上した。

使い方はシンプルで、スマホアプリ「Nest」からドアベルが捉えた玄関先のビデオを見ることができる(下の写真左端)。

また、来客があると、アラートをスマホで受信する。更に、商品が宅配されたとき、AIはそのイベントを把握し、スマホにメッセージを送信する(中央最上段)。

​玄関先に置かれた商品を手早く取り上げることで盗難被害を防ぐことができる。
画像
出典: VentureClef

クラウドに映像を記録

撮影されたビデオはクラウド「Nest Aware」に記録され、これを検索することで特定のイベント(商品配送など)を再生できる(上の写真右端)。

​一方、木の陰などをイベントとして捉え、アラートを受け取ることがあり、判定精度が課題であるとも感じる。
​最新モデルはAIチップが搭載され、画像解析の判定精度が上がり、誤検知が減ると期待される。

AIドアベルが人気商品

いま米国でAI監視カメラの導入が進んでいる。

特に、AIドアベルの人気が高く、多くの家庭がセキュリティ強化のために設置している。

​Googleからは上述のNest Doorbellが出荷されている。また、Amazonからは「Ring Doorbell」が提供され、両者が人気商品で市場を二分している。

​これらは、宅配商品の盗難を防ぐために、また、自宅前のイベントを監視するために使われている。

​GoogleはドアベルのAI性能を向上することでAmazonとの差別化を図っている。
≪ 前の記事を見る
次の記事を見る ≫

コメントはクローズされています。

    著者

    Kaz Miyamoto
    ​
    VentureClef, LLC

    記事一覧(目次)で見る

    カテゴリ

    すべて
    AI(人工知能)技術
    AIセキュリティ
    AI規制
    GAFAM
    NFT
    ヘルスケア
    メタバース
    ロボット
    自動運転車

    アーカイブ

    3 月 2022
    2 月 2022
    1 月 2022
    12 月 2021
    11 月 2021
    10 月 2021
    9 月 2021
    8 月 2021
    7 月 2021
    6 月 2021
    5 月 2021
    4 月 2021

    RSS フィード

Picture
GDEPソリューションズ株式会社
東京都文京区本郷三丁目34番3号 本郷第一ビル8階
TEL:03-5802-7050
・NVIDIA認定 Elite Partner [最上位レベル]
・NVIDIA Advanced Technology Program 達成  [DGX 販売資格]
・東京都公安委員会 古物営業許可番号
 第305471905562号
≫ 新着情報
≫ GPU2021開催概要
​
GPU製品
​≫ 即納モデル
≫ NVIDIA GPU一覧
 ≫NVDIA RTX スペック比較

≫ GPUレンタル一覧
≫ GPU年定額プラン
≫ AI・データサイエンスおすすめ
≫ 数値計算・解析おすすめ一覧
≫ NVIDIA A100搭載 SM740GP


​ストレージ
​≫ Synology
≫ DDN STORAGE
≫ PURESTORAGE
​
HPC
≫ HPC Workstation
≫ HPCおすすめGPUサーバー
≫ AXXE-L by XTREME-D
≫ NVIDIA HPC SDK
≫ プログラム高速化サービス
クラウド製品
​≫ セキュリティ
≫ 仮想化
≫ リモートアクセス

≫ ハイブリッドクラウドNAS
≫ クラウドストレージ
​
​GPUコラム
≫ GPUプログラミング入門
≫ GPU Technology for CG/AI
≫ シリコンバレー発信 New Technology Repot
≫ ツブ子が聞く・見る・行く
​

導入事例
≫ DGX SYSTEMS
≫ GPU Computing
会社情報
≫ ごあいさつ
≫ 会社概要
≫ アクセスマップ
≫ 採用情報
​
≫ お問い合わせ
​
≫ 個人情報の取扱いについて
≫ 利用規約

​
≫ メルマガを購読する
グループ会社
Prometech Softwareサイト
©2021 GDEP Solutions,Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ