GDEP Solutions, Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ
シリコンバレー発信

New Technology
​Report

[No.26] Amazonは家庭向けロボットを投入、高度なAIを搭載し家の中を自動走行するが機能は限定的、5年後を見据えた開発の最初のステップとなる

10/1/2021

 
今週、Amazonは発表イベントで家庭向けのロボット「Astro」を公開した(下の写真)。
ロボットは子犬ほどの大きさで、頭部にディスプレイが搭載され表情を表し情報を表示する。
ロボットはカメラの映像をAIで解析し、家の中で障害物を避けて自動で走行する。
​
ベーシックな機能だけを搭載したロボットで、Amazonはこれを「Day 1 Editions」と呼ぶ。完結した製品になるまでには5年程度の時間が必要で、Amazonはロボットの普及に向け第一歩を踏み出した。
画像
出典: Amazon

Astroの利用方法

ロボットはエンターテイメントとセキュリティを目的に開発された。
ロボットは”移動式AIスピーカー”という構成で、人間の言葉を理解してタスクを実行する。

ロボットに指示するときは、「Astro」と呼びかける。
「Astro, call Mom」と指示すると、ロボットはお母さんに電話してビデオで通話する(下の写真、左側)。
ロボットは利用者をフォローする機能があり、家の中で移動しながら通話できる。

また、「Astro, Take this to Alicia」と言えば、飲み物を指示した人物に届ける(中央)。
​ロボットは顔認識機能があり、人物を見分けることができる。更に、「Astro, remind Lucas…」と言えば、指示した人物にリマインダーを送信する(右側)。
画像
出典: Amazon

セキュリティ機能

一方、住人が不在の時はロボットが警備員となり家の中をパトロールして安全を確認する。

ロボットは潜望鏡を搭載しており、これを伸ばして先端のカメラで家の中を監視する(下の写真)。
高い視点でモニターでき、キッチンのガスコンロがオフになっていることなどをモニターする。

​カメラが捉えた映像は利用者のスマホアプリに送信される。因みに、利用者はスマホアプリからロボットに監視する場所の指示を出す。
画像
出典: Amazon

シニアの健康管理

ロボットの利用法で期待されているのがシニアの健康管理である。
これは「Alexa Together」というサービスをロボットに適用したもので、離れて暮らす年老いた両親の健康状態をモニターする(下の写真)。

​異常があればロボットは遠隔地にいる管理者にアラートを送信する。また、本人にかわりショッピングリストを生成し、リマインダーを送信するなどの機能もある。ロボットが介護士となり家の中でシニアの健康状態をモニターする。
画像
出典: Amazon

ナビゲーションシステム

ロボットは高度なAIを搭載しセンサーの情報を解析し部屋の中を自動で走行する。

これは「Intelligent Motion」と呼ばれ、ロボットのナビゲーションシステムとなる。
ロボットは三セットのセンサー「Navigation Sensors」、「Obstacle Sensors」、「Depth Sensors」を搭載し、これをAIで解析して移動ルートを算出する。

​また、ロボットはSimultaneous localization and mapping (SLAM)という技法で、家の中のマップを生成し、現在の位置を把握する。(下の写真、SLAMの手法で生成された3Dマップでロボットはこれをベースに走行ルートを決定する。)
画像
出典: Amazon

多種類のセンサー

ロボットは三種類のセンサーを使い家の中を自律走行する。
マップ生成においては「Navigation Sensors」が使われる。このセンサーは家の中のランドマーク(テーブルの角やドアのフレームなど)を把握し、マップにこの情報を組み込む。

​ロボットが家の中を移動する際の目印として利用する。
一方、「Obstacle Sensors」はロボットの目の前のオブジェクトを把握し、近傍のマップを高精度で生成する。
​
​このほかに「Depth Sensors」は人物を把握するために使われる。(下の写真、Navigation SensorsとObstacle Sensorsはロボット本体正面に搭載されている。Depth Sensorsはディスプレイ上部に搭載されている。)
画像
出典: Amazon

自動走行の仕組み

生成されたマップでロボットは目的地に移動するための最適なルールを算出する。
アルゴリズムは数百のルートを検証し、そこから最適なものを選ぶ(下の写真)。

AIは長期的な経路(下の写真、青色の線)と短期的な(2-3秒先の)経路(緑色の線)を算出する。更に、自動運転車とは異なり、家の中では決められたレーンは無く、また、床に物が置かれるなどして経路が塞がれる事象が発生する。

​周囲の状況は頻繁に変わり、その都度、アルゴリズムがルートを再計算し、新しい環境に適応する。
画像
出典: Amazon

人間とのインタラクション

ロボットは人間とモノを見分けることができ、人間に対しては礼儀正しい対応をする。

ロボットは人間に合わせた速度になり、また、社会的に適切なインタラクションを行う。
具体的には、ロボットは人間に接するときは、正面からアプローチし、最適な距離を取って停止する。

​また、ソファに腰かけている時は、隣に停止するなどのアクションを取る(下の写真)。
​人間に接するときは、「Navigation Sensors」と「Depth Sensors」が使われ、優雅な動作で対応する。
画像
出典: Amazon

Amazonがロボットを開発する理由

高度なAIで構成されるAstroであるが、その利用形態はエンターテイメントやセキュリティに限られる。

ロボットはアームを搭載しておらず、冷蔵庫を開けてビールを届けるなどのタスクはできない。また、洗濯物をたたみ、部屋を掃除するなどの家事が出来るわけでもない。

Astroはロボットとしての最小限の機能だけで、利用方法は限られる。
Amazonはこれを認識したうえでAstroを投入し、これをDay 1 Editionsと呼び、ベータ版であることを強調している。

Astroの販売価格は999.99ドル(導入価格)で年末から出荷が始まる。
​
​Amazonは5年から10年後には家庭にロボットが普及する時代になると予測しており、Astroの開発はこれに向けた第一歩となる。
≪ 前の記事を見る
次の記事を見る ≫

コメントはクローズされています。

    著者

    Kaz Miyamoto
    ​
    VentureClef, LLC

    記事一覧(目次)で見る

    カテゴリ

    すべて
    AI(人工知能)技術
    AIセキュリティ
    AI規制
    GAFAM
    NFT
    ヘルスケア
    メタバース
    ロボット
    自動運転車

    アーカイブ

    3 月 2022
    2 月 2022
    1 月 2022
    12 月 2021
    11 月 2021
    10 月 2021
    9 月 2021
    8 月 2021
    7 月 2021
    6 月 2021
    5 月 2021
    4 月 2021

    RSS フィード

Picture
GDEPソリューションズ株式会社
東京都文京区本郷三丁目34番3号 本郷第一ビル8階
TEL:03-5802-7050
・NVIDIA認定 Elite Partner [最上位レベル]
・NVIDIA Advanced Technology Program 達成  [DGX 販売資格]
・東京都公安委員会 古物営業許可番号
 第305471905562号
≫ 新着情報
≫ GPU2021開催概要
​
GPU製品
​≫ 即納モデル
≫ NVIDIA GPU一覧
 ≫NVDIA RTX スペック比較

≫ GPUレンタル一覧
≫ GPU年定額プラン
≫ AI・データサイエンスおすすめ
≫ 数値計算・解析おすすめ一覧
≫ NVIDIA A100搭載 SM740GP


​ストレージ
​≫ Synology
≫ DDN STORAGE
≫ PURESTORAGE
​
HPC
≫ HPC Workstation
≫ HPCおすすめGPUサーバー
≫ AXXE-L by XTREME-D
≫ NVIDIA HPC SDK
≫ プログラム高速化サービス
クラウド製品
​≫ セキュリティ
≫ 仮想化
≫ リモートアクセス

≫ ハイブリッドクラウドNAS
≫ クラウドストレージ
​
​GPUコラム
≫ GPUプログラミング入門
≫ GPU Technology for CG/AI
≫ シリコンバレー発信 New Technology Repot
≫ ツブ子が聞く・見る・行く
​

導入事例
≫ DGX SYSTEMS
≫ GPU Computing
会社情報
≫ ごあいさつ
≫ 会社概要
≫ アクセスマップ
≫ 採用情報
​
≫ お問い合わせ
​
≫ 個人情報の取扱いについて
≫ 利用規約

​
≫ メルマガを購読する
グループ会社
Prometech Softwareサイト
©2021 GDEP Solutions,Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ