GDEP Solutions, Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ
シリコンバレー発信

New Technology
​Report

[No.27] 創設以来最大の危機に直面、安全より利益を選択、アルゴリズムが有害な情報を配信し閲覧数を増やす

10/8/2021

 
Facebookは創業以来最大の危機に直面している。
Facebookの内部告発者がアメリカ連邦議会公聴会で証言し、アルゴリズムの危険性を訴えた。

​Facebookは有害情報を発信すると閲覧回数が増えることを理解しており、利用者の安全を犠牲に利益を上げる手法を選択したと証言。

一方、Facebookは、この解釈は正しくなく、アルゴリズムの改良で有害記事が減り、友人や家族からの記事が増えたと反論。
​連邦政府は、アルゴリズムの公開も含め、ソーシャルメディアに関するルールを制定する方向に動き始めた。
画像
出典: C-SPAN

アメリカ連邦議会公聴会

10月5日、アメリカ連邦議会上院の公聴会「Senate Commerce Subcommittee on Consumer Protection」で元Facebook社員であるFrances HaugenがFacebookのビジネス手法について証言した(上の写真)。

公聴会はインターネットから子供を守ることを目的に開催され、Haugenは、FacebookはInstagramが子供の健康を害していることを把握しているが、企業の利益を優先して有害なコンテンツを送り続けていると証言。

このビジネス慣行は容認できるものではなく、ソーシャルネットワークを規制する法令の制定を訴えた。
​Haugenは議員からの質問に答える形で、Facebookの技術内容を説明し、子供をターゲットとする手法やアルゴリズムの概要などが明らかになった。

内部告発の背景

HaugenはFacebookでProduct Managerとしてアルゴリズムの開発に従事してきた。

Haugenは退社する前に、大量の内部資料をコピーして報道機関Wall Street Journalに提供し、同紙がこれをベースに告発記事を書き、Facebookの問題が表面化した。

​更に、これら内部資料は米国証券取引委員会と米国連邦議会に提出されている。Haugenの証言はこれら大量の社内データに基づき、Facebookのビジネス慣行の詳細が明らかになった。

Instagramは少女に有害

HaugenはInstagramが若い女性に有害である点を中心に証言した。

Facebookは内部調査でInstagramが子供の健康を害することを把握しているが、この事実を隠匿し、有害なコンテンツの配信を続けていると指摘した。

具体的には、英国における調査で、女性ティーンエイジャーの13.5%はInstagramを使い始めてから自殺を考えるようになった、という問題が明らかになった。

​また、別の調査で、女性ティーンエイジャーの17%はInstagramを使い始めてから摂食障害を引き起こしたことも判明。更に、身体の容姿にコンプレックスがある少女の32%は、Instagramを見ると精神状態が悪化したことも報告されている。
画像
出典: Instagram

アルゴリズムの危険性

これらの問題はコンテンツを配信するロジックを規定するアルゴリズムにある。

Facebookはアルゴリズムを使って読者に最適なコンテンツを配信する方式を取る。
このアルゴリズムは「Engagement Based Ranking」と呼ばれ、どのような内容のコンテンツを配信するかを決定する。

Facebookは友人や家族間でコミュニケーションが増進するコンテンツを配信する方式を採用している。
これは「Meaningful Social Interactions(MSI)」と呼ばれ、読者がコンテンツに対してリアクションするものを優先して配信する。

​具体的には、読者がクリックしたり、いいねボタンを押したり、他者と共有するコンテンツを配信する。アルゴリズムは読者がどんどんシェアしてくれるコンテンツを中心に配信する。

アルゴリズムの評価

つまり、アルゴリズムはMeaningful Social Interactions(MSI指標)が向上するよう設定されている。

実際には、Facebookでは多数のアルゴリズムが稼働しており、それぞれのアルゴリズムの設定を変更して、コンテンツがシェアされる回数が増えるように調整される。

​アルゴリズムでMSI指標を上げると、より多くのコンテンツがシェアされ、ページビューが向上し、収益が上がる構造となる。つまり、FacebookとしてはMSI指標を向上することが究極のゴールで、これにより事業が拡大し収益があがる。

ヘイトスピーチが増える

しかし、Facebookは内部調査で、MSI指標を上げると、その副作用として、ヘイトスピーチや偽情報や暴力を扇動するコンテンツが増えるという事実を把握した。

アルゴリズムがこれら有害なコンテンツを配信すると、利用者のインタラクションが増え、その結果MSI指標が向上する。
利用者の観点からは、有害なコンテンツに惹きつけられ、これらをシェアする回数が増え、ソーシャルネットワークで拡散することになる。アルゴリズムが有害コンテンツの拡散機となることを意味する。
画像
出典: Facebook

安全より利益を選択

Facebookはこれらの事実を把握していたにも拘わらず、これを隠匿してMSI指標を高めてきた。

MSI指標を上げると利用者に有害なコンテンツが配信され危険であるが、企業としてはページビューが増え広告収入が増える。
​つまり、Facebookは危険性を隠匿し、利用者の安全より企業の収益を優先させることを選択した。

AIが未熟

同時に、Facebookはヘイトスピーチなど有害なコンテンツをAIで検知し、これらを削除する研究を進めているが、技術は未熟でこれらを正確に検知することができない。

2021年の夏に、Facebookはコロナウイルスに関する偽情報をAIでフィルタリングする試験を実施した。

​その結果、検知精度は80%から90%で、多くのコンテンツがフィルターをすり抜けた。このAIは英語のコンテンツを対象とし、他の言語には対応できていない。
画像
出典: Facebook

Facebookの反論

公聴会での証言を受けて、Mark Zuckerbergはメッセージを発信し、Haugenの主張は間違っていると反論した。

議論の核心はFacebookが安全より利益を優先しているとの主張で、これは完全に間違いだと述べている。具体的には、FacebookはMSI指標を導入したが、その結果有害ビデオ(Viral Videos)が減り、友人や家族からのコンテンツが増えたと説明。

また、Facebookは意図的に有害コンテンツを拡散しているとの主張に対し、Facebookは広告でビジネスを構築しており、企業は有害コンテンツには広告を掲載しないと反論した。

​Instagramに関しては、子供たちにスマホが普及しており、これを制限するのではなく、子供たちのニーズに沿って安全な機能を提供することがFacebookの役割と説明した。

ルールの制定

Haugenは公聴会で証言した目的は議会にソーシャルメディアに関するルールの設定を促すためと述べている。

同様に、ZuckerbergはFacebookのような企業がコンテンツ選別に関す決定を下すのではなく、政府が法令を改定して新しい時代に沿ったルールを制定すべきと発言している。

​HaugenもZuckerbergも政府がソーシャルネットワークを規制する法令を制定すべきという点では共通の理解を持っている。

Facebookの転機

早くからソーシャルネットワークの危険性が指摘されてきたが、Haugenによる証言でアルゴリズムなどシステムの詳細が明らかになり、Facebookの問題の本質が見えてきた。

​Facebookはソーシャルネットワークでトップのシェアを持つが、利用者数は伸び悩み事業拡大が難しくなっている。Facebookは有害コンテンツの拡散を押さえ、事業を拡大するという難しいかじ取りを迫られる。
≪ 前の記事を見る
次の記事を見る ≫

コメントはクローズされています。

    著者

    Kaz Miyamoto
    ​
    VentureClef, LLC

    記事一覧(目次)で見る

    カテゴリ

    すべて
    AI(人工知能)技術
    AIセキュリティ
    AI規制
    GAFAM
    NFT
    ヘルスケア
    メタバース
    ロボット
    自動運転車

    アーカイブ

    3 月 2022
    2 月 2022
    1 月 2022
    12 月 2021
    11 月 2021
    10 月 2021
    9 月 2021
    8 月 2021
    7 月 2021
    6 月 2021
    5 月 2021
    4 月 2021

    RSS フィード

Picture
GDEPソリューションズ株式会社
東京都文京区本郷三丁目34番3号 本郷第一ビル8階
TEL:03-5802-7050
・NVIDIA認定 Elite Partner [最上位レベル]
・NVIDIA Advanced Technology Program 達成  [DGX 販売資格]
・東京都公安委員会 古物営業許可番号
 第305471905562号
≫ 新着情報
≫ GPU2021開催概要
​
GPU製品
​≫ 即納モデル
≫ NVIDIA GPU一覧
 ≫NVDIA RTX スペック比較

≫ GPUレンタル一覧
≫ GPU年定額プラン
≫ AI・データサイエンスおすすめ
≫ 数値計算・解析おすすめ一覧
≫ NVIDIA A100搭載 SM740GP


​ストレージ
​≫ Synology
≫ DDN STORAGE
≫ PURESTORAGE
​
HPC
≫ HPC Workstation
≫ HPCおすすめGPUサーバー
≫ AXXE-L by XTREME-D
≫ NVIDIA HPC SDK
≫ プログラム高速化サービス
クラウド製品
​≫ セキュリティ
≫ 仮想化
≫ リモートアクセス

≫ ハイブリッドクラウドNAS
≫ クラウドストレージ
​
​GPUコラム
≫ GPUプログラミング入門
≫ GPU Technology for CG/AI
≫ シリコンバレー発信 New Technology Repot
≫ ツブ子が聞く・見る・行く
​

導入事例
≫ DGX SYSTEMS
≫ GPU Computing
会社情報
≫ ごあいさつ
≫ 会社概要
≫ アクセスマップ
≫ 採用情報
​
≫ お問い合わせ
​
≫ 個人情報の取扱いについて
≫ 利用規約

​
≫ メルマガを購読する
グループ会社
Prometech Softwareサイト
©2021 GDEP Solutions,Inc.
  • Home
    • 新着情報一覧
    • NVIDIA NEWS
    • GPU2021 開催概要 >
      • Day1 AI & GPU セッション
      • Day2 イメージングAI
      • Day3 GPUスパコン
      • 講演レポート | Denso
      • 過去開催 >
        • GPU2020
        • GPU2019
  • GPU製品
    • 即納モデル
    • NVIDIA GPU 一覧 >
      • NVIDIA H100
      • NVIDIA A100
      • NVIDIA RTX スペック比較 >
        • NVIDIA RTX A6000
        • NVIDIA RTX A5000
        • NVIDIA RTX A4500
        • NVIDIA RTX A4000
        • NVIDIA RTX A2000
      • Quadro GV100
    • GPUレンタル一覧
    • GPU年定額プラン
    • AI・データサイエンスおすすめ一覧 >
      • NVIDIA DGX H100
      • NVIDIA DGX A100
      • DGX STATION A100
      • HP Z8 G4 Workstation
      • HP ZBook Fury17G7 Mobile Workstation
      • Dell Precision 7920 Tower
      • DeepLearning BOXⅡ
      • DeepLearning STATION
      • NVIDIA EGX サーバー
      • HITACHI SR24000
    • 数値計算・解析おすすめ一覧 >
      • HP Z4 G4 Workstation
      • HP Z8 G4 解析ソフトウェア動作確認済みモデル
      • Supermicro 7049GP
    • NVIDIA A100搭載 Supermicro 740GP
  • ストレージ
    • Synology
    • DDN STORAGE
    • PURESTORAGE
  • HPC
    • HPC Workstation
    • HPCおすすめGPUサーバー
    • HPC SIサービス
    • AXXE-L by XTREME-D
    • NVIDIA HPC SDK
    • プログラム高速化サービス
  • クラウド製品
    • セキュリティ >
      • KernelCare
    • 仮想化 >
      • Login VSI
      • Login PI
    • リモートアクセス >
      • FastX
      • NiceDCV
      • NoMachine
    • ハイブリッドクラウドNAS >
      • Morro Data
    • クラウドストレージ >
      • クラウドストレージ Wasabi
  • GPUコラム / 導入事例
    • GPUプログラミング >
      • 初級編
      • 中級編 >
        • 第4回:MPI+OpenACC実装における計算と通信のオーバーラップ
        • 第3回:拡散現象シミュレーションのおさらい
        • 第2回:簡単なOpenACC + MPI コードで考える
        • 第1回:複数のGPUを使う方法とは?
    • GPU Technology for CG/AI >
      • 深層学習を利用した画像処理・必要なGPU性能
      • トランスフォーマー 最近流行のニューラルネットワーク
      • GAN Inversion による写実的画像生成の制御
      • 深層学習におけるアノテーションコストを抑えるための取り組み Active Learning
      • 深層学習に基づく人物画像の再照明
      • GPUの起源と進化
      • AlphaGo とその後
      • CUDAを用いたシンプルなパストレーシング
      • 流体シミュレーションの応用
      • GPUを用いた高速レンダリング
      • GPUを基盤としたCG/AIの技術進化
    • シリコンバレー発信 New Technology Report >
      • 最新記事から
    • ツブ子が聞く・見る・行く! >
      • 見る!NVIDIA RTX A6000
      • 聞く!NVIDIA DGX A100
      • 見る!NVIDIA A100 Tensor Core GPU
    • 導入事例 >
      • DGX SYSTEMS >
        • NVIDIA DGX A100 | 金沢大学
      • GPU Computing
  • 会社情報
    • ごあいさつ
    • 会社概要
    • アクセスマップ
    • 採用情報
  • お問い合わせ